Deletion of spoIIAB blocks endospore formation in Bacillus subtilis at an early stage.

نویسندگان

  • R Coppolecchia
  • H DeGrazia
  • C P Moran
چکیده

During an early stage of endospore formation in Bacillus subtilis, the cell divides asymmetrically into two compartments that follow different developmental paths. The differential expression of genes in these two compartments is controlled in part by the production of compartment-specific transcription factors, sigma G and sigma K. It is not known how sigma G accumulation is restricted to one of the two compartments, the forespore. However, the observations that sigma F directs transcription of the structural gene for sigma G and that sigma F activity can be modified by the product of a gene, spoIIAB, has led us to investigate the role of spoIIAB during sporulation. We have isolated mutants that carry deletion alleles of spoIIAB. Electron microscopic examination of these mutants revealed that these mutations blocked endospore formation at an early stage before septation and caused extensive cell lysis. The spoIIAB deletion alleles caused hyperexpression of genes that are normally expressed exclusively in the forespore compartments of sporulating wild-type cells, whereas these alleles reduced expression of other genes, including spoIIE, which is expressed before septation in wild-type cells. These observations confirm that spoIIAB is essential for sporulation and are consistent with models in which the product of spoIIAB plays a role in regulating the timing and/or compartment specificity of sigma F- and sigma G-directed transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique degradation signal for ClpCP in Bacillus subtilis.

Regulation of the cell-specific transcription factor sigma(F) in the spore-forming bacterium Bacillus subtilis involves the antisigma factor SpoIIAB. Contributing to the activation of sigma(F) is the degradation of SpoIIAB in a manner that depends on the protease ClpCP. Here we show that the three residues (LCN) located at the extreme C terminus of SpoIIAB are both necessary and sufficient for ...

متن کامل

Fate of the SpoIIAB*-ADP liberated after SpoIIAB phosphorylates SpoIIAA of Bacillus subtilis.

Phosphorylation of SpoIIAA catalyzed by SpoIIAB helps to regulate the first sporulation-specific sigma factor, sigma(F), of Bacillus subtilis. The steady-state rate of phosphorylation is known to be exceptionally slow and to be limited by the return of the protein kinase, SpoIIAB, to a catalytically active state. Previous work from this laboratory has suggested that, after catalyzing the phosph...

متن کامل

Evidence for common sites of contact between the antisigma factor SpoIIAB and its partners SpoIIAA and the developmental transcription factor sigmaF in Bacillus subtilis.

The activity of the developmental transcription factor sigmaF in Bacillus subtilis is governed by a switch involving the dual function protein SpoIIAB. SpoIIAB is an antisigma factor that forms complexes with sigmaF and with an alternative partner protein SpoIIAA. SpoIIAB is also a protein kinase that can inactivate SpoIIAA by phosphorylating it on a serine residue. We sought to identify amino ...

متن کامل

Biofilm formation and sporulation in Bacillus subtilis

Biofilms are architecturally complex communities of microorganisms in which the cells are held together by an extracellular matrix, typically containing exopolysaccharides (EPSs), proteins and some nucleic acids. Our understanding of the molecular mechanisms involved in biofilm formation has increased tremendously in recent years. However, information about biofilm formation and sporulation is ...

متن کامل

Hpr (ScoC) and the phosphorelay couple cell cycle and sporulation in Bacillus subtilis.

Bacillus subtilis sporulation is a developmental process that culminates in the formation of a highly resistant and persistent endospore. Inhibiting DNA synthesis prior to the completion of the final round of DNA replication blocks sporulation at an early stage. Conditions that prevent compartmentalization of gene expression, i.e. inhibition of asymmetric septum formation or chromosome partitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 173 21  شماره 

صفحات  -

تاریخ انتشار 1991